'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(f(X)) -> c(n__f(n__g(n__f(X))))
     , c(X) -> d(activate(X))
     , h(X) -> c(n__d(X))
     , f(X) -> n__f(X)
     , g(X) -> n__g(X)
     , d(X) -> n__d(X)
     , activate(n__f(X)) -> f(activate(X))
     , activate(n__g(X)) -> g(X)
     , activate(n__d(X)) -> d(X)
     , activate(X) -> X}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
    , c^#(X) -> c_1(d^#(activate(X)))
    , h^#(X) -> c_2(c^#(n__d(X)))
    , f^#(X) -> c_3()
    , g^#(X) -> c_4()
    , d^#(X) -> c_5()
    , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
    , activate^#(n__g(X)) -> c_7(g^#(X))
    , activate^#(n__d(X)) -> c_8(d^#(X))
    , activate^#(X) -> c_9()}
  
  The usable rules are:
   {  activate(n__f(X)) -> f(activate(X))
    , activate(n__g(X)) -> g(X)
    , activate(n__d(X)) -> d(X)
    , activate(X) -> X
    , f(f(X)) -> c(n__f(n__g(n__f(X))))
    , f(X) -> n__f(X)
    , g(X) -> n__g(X)
    , d(X) -> n__d(X)
    , c(X) -> d(activate(X))}
  
  The estimated dependency graph contains the following edges:
   {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
     ==> {c^#(X) -> c_1(d^#(activate(X)))}
   {c^#(X) -> c_1(d^#(activate(X)))}
     ==> {d^#(X) -> c_5()}
   {h^#(X) -> c_2(c^#(n__d(X)))}
     ==> {c^#(X) -> c_1(d^#(activate(X)))}
   {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
     ==> {f^#(X) -> c_3()}
   {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
     ==> {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
   {activate^#(n__g(X)) -> c_7(g^#(X))}
     ==> {g^#(X) -> c_4()}
   {activate^#(n__d(X)) -> c_8(d^#(X))}
     ==> {d^#(X) -> c_5()}
  
  We consider the following path(s):
   1) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
       , c^#(X) -> c_1(d^#(activate(X)))
       , d^#(X) -> c_5()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , c^#(X) -> c_1(d^#(activate(X)))
               , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , d^#(X) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , d^#(X) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [7]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [6]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(X) -> c_1(d^#(activate(X)))}
            and weakly orienting the rules
            {  f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(X) -> c_1(d^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [3]
                  c^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [13]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  c^#(X) -> c_1(d^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [7]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , c^#(X) -> c_1(d^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [7]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  c(X) -> d(activate(X))
             , d(X) -> n__d(X)
             , c^#(X) -> c_1(d^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X
             , d^#(X) -> c_5()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [13]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , c(X) -> d(activate(X))
                 , d(X) -> n__d(X)
                 , c^#(X) -> c_1(d^#(activate(X)))
                 , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , g(X) -> n__g(X)
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X
                 , d^#(X) -> c_5()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , c(X) -> d(activate(X))
                   , d(X) -> n__d(X)
                   , c^#(X) -> c_1(d^#(activate(X)))
                   , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , g(X) -> n__g(X)
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X
                   , d^#(X) -> c_5()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(6) -> 4
                 , f_1(6) -> 6
                 , f_2(14) -> 12
                 , f_2(14) -> 18
                 , f_3(21) -> 18
                 , f_3(21) -> 22
                 , c_1(9) -> 4
                 , c_1(9) -> 6
                 , c_2(15) -> 4
                 , c_2(15) -> 6
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 6
                 , n__f_1(6) -> 4
                 , n__f_1(6) -> 6
                 , n__f_1(10) -> 9
                 , n__f_1(10) -> 12
                 , n__f_1(10) -> 18
                 , n__f_2(6) -> 17
                 , n__f_2(14) -> 12
                 , n__f_2(14) -> 18
                 , n__f_2(16) -> 15
                 , n__f_2(16) -> 18
                 , n__f_2(16) -> 22
                 , n__f_3(21) -> 18
                 , n__f_3(21) -> 22
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 6
                 , n__g_1(2) -> 6
                 , n__g_1(4) -> 10
                 , n__g_1(4) -> 14
                 , n__g_2(4) -> 14
                 , n__g_2(17) -> 16
                 , n__g_2(17) -> 21
                 , n__g_3(17) -> 21
                 , d_0(2) -> 4
                 , d_1(2) -> 6
                 , d_1(12) -> 4
                 , d_1(12) -> 6
                 , d_2(18) -> 4
                 , d_2(18) -> 6
                 , d_3(22) -> 4
                 , d_3(22) -> 6
                 , activate_0(2) -> 4
                 , activate_1(2) -> 6
                 , activate_1(9) -> 12
                 , activate_2(9) -> 18
                 , activate_2(10) -> 14
                 , activate_2(15) -> 18
                 , activate_3(15) -> 22
                 , activate_3(16) -> 21
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 6
                 , n__d_1(2) -> 6
                 , n__d_1(12) -> 4
                 , n__d_1(12) -> 6
                 , n__d_2(18) -> 4
                 , n__d_2(18) -> 6
                 , n__d_3(22) -> 4
                 , n__d_3(22) -> 6
                 , g_0(2) -> 4
                 , g_1(2) -> 6
                 , g_2(4) -> 14
                 , g_3(17) -> 21
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 5
                 , f^#_1(6) -> 11
                 , c_0_1(8) -> 5
                 , c_0_1(8) -> 11
                 , c_0_2(20) -> 11
                 , c^#_0(2) -> 1
                 , c^#_1(9) -> 8
                 , c^#_2(15) -> 20
                 , c_1_0(3) -> 1
                 , c_1_1(7) -> 1
                 , c_1_1(13) -> 8
                 , c_1_2(19) -> 8
                 , c_1_3(23) -> 20
                 , d^#_0(2) -> 1
                 , d^#_0(4) -> 3
                 , d^#_1(6) -> 7
                 , d^#_1(12) -> 13
                 , d^#_2(18) -> 19
                 , d^#_3(22) -> 23
                 , c_5_0() -> 1
                 , c_5_0() -> 3
                 , c_5_1() -> 7
                 , c_5_1() -> 13
                 , c_5_2() -> 19
                 , c_5_3() -> 23
                 , activate^#_0(2) -> 1
                 , c_6_0(5) -> 1
                 , c_6_1(11) -> 1}
      
   2) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
       , c^#(X) -> c_1(d^#(activate(X)))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , c^#(X) -> c_1(d^#(activate(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [4]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(X) -> c_1(d^#(activate(X)))}
            and weakly orienting the rules
            {  f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(X) -> c_1(d^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [13]
                  c_6(x1) = [1] x1 + [3]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  c^#(X) -> c_1(d^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [7]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , c^#(X) -> c_1(d^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  c(X) -> d(activate(X))
             , d(X) -> n__d(X)
             , c^#(X) -> c_1(d^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , c(X) -> d(activate(X))
                 , d(X) -> n__d(X)
                 , c^#(X) -> c_1(d^#(activate(X)))
                 , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , g(X) -> n__g(X)
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , c(X) -> d(activate(X))
                   , d(X) -> n__d(X)
                   , c^#(X) -> c_1(d^#(activate(X)))
                   , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , g(X) -> n__g(X)
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(6) -> 4
                 , f_1(6) -> 6
                 , f_2(14) -> 12
                 , f_2(14) -> 18
                 , f_3(21) -> 18
                 , f_3(21) -> 22
                 , c_1(9) -> 4
                 , c_1(9) -> 6
                 , c_2(15) -> 4
                 , c_2(15) -> 6
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 6
                 , n__f_1(6) -> 4
                 , n__f_1(6) -> 6
                 , n__f_1(10) -> 9
                 , n__f_1(10) -> 12
                 , n__f_1(10) -> 18
                 , n__f_2(6) -> 17
                 , n__f_2(14) -> 12
                 , n__f_2(14) -> 18
                 , n__f_2(16) -> 15
                 , n__f_2(16) -> 18
                 , n__f_2(16) -> 22
                 , n__f_3(21) -> 18
                 , n__f_3(21) -> 22
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 6
                 , n__g_1(2) -> 6
                 , n__g_1(4) -> 10
                 , n__g_1(4) -> 14
                 , n__g_2(4) -> 14
                 , n__g_2(17) -> 16
                 , n__g_2(17) -> 21
                 , n__g_3(17) -> 21
                 , d_0(2) -> 4
                 , d_1(2) -> 6
                 , d_1(12) -> 4
                 , d_1(12) -> 6
                 , d_2(18) -> 4
                 , d_2(18) -> 6
                 , d_3(22) -> 4
                 , d_3(22) -> 6
                 , activate_0(2) -> 4
                 , activate_1(2) -> 6
                 , activate_1(9) -> 12
                 , activate_2(9) -> 18
                 , activate_2(10) -> 14
                 , activate_2(15) -> 18
                 , activate_3(15) -> 22
                 , activate_3(16) -> 21
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 6
                 , n__d_1(2) -> 6
                 , n__d_1(12) -> 4
                 , n__d_1(12) -> 6
                 , n__d_2(18) -> 4
                 , n__d_2(18) -> 6
                 , n__d_3(22) -> 4
                 , n__d_3(22) -> 6
                 , g_0(2) -> 4
                 , g_1(2) -> 6
                 , g_2(4) -> 14
                 , g_3(17) -> 21
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 5
                 , f^#_1(6) -> 11
                 , c_0_1(8) -> 5
                 , c_0_1(8) -> 11
                 , c_0_2(20) -> 11
                 , c^#_0(2) -> 1
                 , c^#_1(9) -> 8
                 , c^#_2(15) -> 20
                 , c_1_0(3) -> 1
                 , c_1_1(7) -> 1
                 , c_1_1(13) -> 8
                 , c_1_2(19) -> 8
                 , c_1_3(23) -> 20
                 , d^#_0(2) -> 1
                 , d^#_0(4) -> 3
                 , d^#_1(6) -> 7
                 , d^#_1(12) -> 13
                 , d^#_2(18) -> 19
                 , d^#_3(22) -> 23
                 , activate^#_0(2) -> 1
                 , c_6_0(5) -> 1
                 , c_6_1(11) -> 1}
      
   3) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [7]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [7]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [7]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  c(X) -> d(activate(X))
             , d(X) -> n__d(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , c(X) -> d(activate(X))
                 , d(X) -> n__d(X)
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
                 , g(X) -> n__g(X)
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , c(X) -> d(activate(X))
                   , d(X) -> n__d(X)
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))
                   , g(X) -> n__g(X)
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(11) -> 10
                 , f_2(11) -> 15
                 , f_3(17) -> 15
                 , f_3(17) -> 18
                 , c_1(8) -> 4
                 , c_1(8) -> 5
                 , c_2(12) -> 4
                 , c_2(12) -> 5
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(9) -> 8
                 , n__f_1(9) -> 10
                 , n__f_1(9) -> 15
                 , n__f_2(5) -> 14
                 , n__f_2(11) -> 10
                 , n__f_2(11) -> 15
                 , n__f_2(13) -> 12
                 , n__f_2(13) -> 15
                 , n__f_2(13) -> 18
                 , n__f_3(17) -> 15
                 , n__f_3(17) -> 18
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 5
                 , n__g_1(2) -> 5
                 , n__g_1(4) -> 9
                 , n__g_1(4) -> 11
                 , n__g_2(4) -> 11
                 , n__g_2(14) -> 13
                 , n__g_2(14) -> 17
                 , n__g_3(14) -> 17
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(10) -> 4
                 , d_1(10) -> 5
                 , d_2(15) -> 4
                 , d_2(15) -> 5
                 , d_3(18) -> 4
                 , d_3(18) -> 5
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(8) -> 10
                 , activate_2(8) -> 15
                 , activate_2(9) -> 11
                 , activate_2(12) -> 15
                 , activate_3(12) -> 18
                 , activate_3(13) -> 17
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 5
                 , n__d_1(2) -> 5
                 , n__d_1(10) -> 4
                 , n__d_1(10) -> 5
                 , n__d_2(15) -> 4
                 , n__d_2(15) -> 5
                 , n__d_3(18) -> 4
                 , n__d_3(18) -> 5
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_2(4) -> 11
                 , g_3(14) -> 17
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , c_0_1(7) -> 3
                 , c_0_1(7) -> 6
                 , c_0_2(16) -> 6
                 , c^#_0(2) -> 1
                 , c^#_1(8) -> 7
                 , c^#_2(12) -> 16
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   4) {  h^#(X) -> c_2(c^#(n__d(X)))
       , c^#(X) -> c_1(d^#(activate(X)))
       , d^#(X) -> c_5()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , c^#(X) -> c_1(d^#(activate(X)))
               , h^#(X) -> c_2(c^#(n__d(X)))
               , d^#(X) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [2]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [2]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(X) -> c_2(c^#(n__d(X)))}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(X) -> c_2(c^#(n__d(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [3]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(X) -> c_1(d^#(activate(X)))}
            and weakly orienting the rules
            {  h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(X) -> c_1(d^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [12]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d^#(X) -> c_5()}
            and weakly orienting the rules
            {  c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d^#(X) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [12]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [8]
                  h^#(x1) = [1] x1 + [14]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  d^#(X) -> c_5()
             , c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [2]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [12]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , d^#(X) -> c_5()
             , c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [12]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [8]
                  h^#(x1) = [1] x1 + [14]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  c(X) -> d(activate(X))
             , d(X) -> n__d(X)
             , d^#(X) -> c_5()
             , c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [3]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , c(X) -> d(activate(X))
                 , d(X) -> n__d(X)
                 , d^#(X) -> c_5()
                 , c^#(X) -> c_1(d^#(activate(X)))
                 , h^#(X) -> c_2(c^#(n__d(X)))
                 , g(X) -> n__g(X)
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , c(X) -> d(activate(X))
                   , d(X) -> n__d(X)
                   , d^#(X) -> c_5()
                   , c^#(X) -> c_1(d^#(activate(X)))
                   , h^#(X) -> c_2(c^#(n__d(X)))
                   , g(X) -> n__g(X)
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(14) -> 11
                 , f_2(14) -> 18
                 , f_3(21) -> 18
                 , f_3(21) -> 22
                 , c_1(9) -> 4
                 , c_1(9) -> 5
                 , c_2(15) -> 4
                 , c_2(15) -> 5
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(10) -> 9
                 , n__f_1(10) -> 11
                 , n__f_1(10) -> 18
                 , n__f_2(5) -> 17
                 , n__f_2(14) -> 11
                 , n__f_2(14) -> 18
                 , n__f_2(16) -> 15
                 , n__f_2(16) -> 18
                 , n__f_2(16) -> 22
                 , n__f_3(21) -> 18
                 , n__f_3(21) -> 22
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 5
                 , n__g_1(2) -> 5
                 , n__g_1(4) -> 10
                 , n__g_1(4) -> 14
                 , n__g_2(4) -> 14
                 , n__g_2(17) -> 16
                 , n__g_2(17) -> 21
                 , n__g_3(17) -> 21
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(2) -> 13
                 , d_1(11) -> 4
                 , d_1(11) -> 5
                 , d_2(2) -> 20
                 , d_2(18) -> 4
                 , d_2(18) -> 5
                 , d_3(22) -> 4
                 , d_3(22) -> 5
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(8) -> 13
                 , activate_1(9) -> 11
                 , activate_2(8) -> 20
                 , activate_2(9) -> 18
                 , activate_2(10) -> 14
                 , activate_2(15) -> 18
                 , activate_3(15) -> 22
                 , activate_3(16) -> 21
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 5
                 , n__d_1(2) -> 5
                 , n__d_1(2) -> 8
                 , n__d_1(2) -> 13
                 , n__d_1(2) -> 20
                 , n__d_1(11) -> 4
                 , n__d_1(11) -> 5
                 , n__d_2(2) -> 20
                 , n__d_2(18) -> 4
                 , n__d_2(18) -> 5
                 , n__d_3(22) -> 4
                 , n__d_3(22) -> 5
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_2(4) -> 14
                 , g_3(17) -> 21
                 , c^#_0(2) -> 1
                 , c^#_1(8) -> 7
                 , c_1_0(3) -> 1
                 , c_1_1(6) -> 1
                 , c_1_1(12) -> 7
                 , c_1_2(19) -> 7
                 , d^#_0(2) -> 1
                 , d^#_0(4) -> 3
                 , d^#_1(5) -> 6
                 , d^#_1(13) -> 12
                 , d^#_2(20) -> 19
                 , h^#_0(2) -> 1
                 , c_2_0(1) -> 1
                 , c_2_1(7) -> 1
                 , c_5_0() -> 1
                 , c_5_0() -> 3
                 , c_5_1() -> 6
                 , c_5_1() -> 12
                 , c_5_2() -> 19}
      
   5) {  h^#(X) -> c_2(c^#(n__d(X)))
       , c^#(X) -> c_1(d^#(activate(X)))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , h^#(X) -> c_2(c^#(n__d(X)))
               , c^#(X) -> c_1(d^#(activate(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(X) -> c_2(c^#(n__d(X)))}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(X) -> c_2(c^#(n__d(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(X) -> c_1(d^#(activate(X)))}
            and weakly orienting the rules
            {  h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(X) -> c_1(d^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [9]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [12]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  n__f(x1) = [1] x1 + [1]
                  n__g(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  c(X) -> d(activate(X))
             , c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [12]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , c(X) -> d(activate(X))
             , c^#(X) -> c_1(d^#(activate(X)))
             , h^#(X) -> c_2(c^#(n__d(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [12]
                  c_2(x1) = [1] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , d(X) -> n__d(X)
                 , c(X) -> d(activate(X))
                 , c^#(X) -> c_1(d^#(activate(X)))
                 , h^#(X) -> c_2(c^#(n__d(X)))
                 , g(X) -> n__g(X)
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , d(X) -> n__d(X)
                   , c(X) -> d(activate(X))
                   , c^#(X) -> c_1(d^#(activate(X)))
                   , h^#(X) -> c_2(c^#(n__d(X)))
                   , g(X) -> n__g(X)
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(14) -> 11
                 , f_2(14) -> 18
                 , f_3(21) -> 18
                 , f_3(21) -> 22
                 , c_1(9) -> 4
                 , c_1(9) -> 5
                 , c_2(15) -> 4
                 , c_2(15) -> 5
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(10) -> 9
                 , n__f_1(10) -> 11
                 , n__f_1(10) -> 18
                 , n__f_2(5) -> 17
                 , n__f_2(14) -> 11
                 , n__f_2(14) -> 18
                 , n__f_2(16) -> 15
                 , n__f_2(16) -> 18
                 , n__f_2(16) -> 22
                 , n__f_3(21) -> 18
                 , n__f_3(21) -> 22
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 5
                 , n__g_1(2) -> 5
                 , n__g_1(4) -> 10
                 , n__g_1(4) -> 14
                 , n__g_2(4) -> 14
                 , n__g_2(17) -> 16
                 , n__g_2(17) -> 21
                 , n__g_3(17) -> 21
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(2) -> 13
                 , d_1(11) -> 4
                 , d_1(11) -> 5
                 , d_2(2) -> 20
                 , d_2(18) -> 4
                 , d_2(18) -> 5
                 , d_3(22) -> 4
                 , d_3(22) -> 5
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(8) -> 13
                 , activate_1(9) -> 11
                 , activate_2(8) -> 20
                 , activate_2(9) -> 18
                 , activate_2(10) -> 14
                 , activate_2(15) -> 18
                 , activate_3(15) -> 22
                 , activate_3(16) -> 21
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 5
                 , n__d_1(2) -> 5
                 , n__d_1(2) -> 8
                 , n__d_1(2) -> 13
                 , n__d_1(2) -> 20
                 , n__d_1(11) -> 4
                 , n__d_1(11) -> 5
                 , n__d_2(2) -> 20
                 , n__d_2(18) -> 4
                 , n__d_2(18) -> 5
                 , n__d_3(22) -> 4
                 , n__d_3(22) -> 5
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_2(4) -> 14
                 , g_3(17) -> 21
                 , c^#_0(2) -> 1
                 , c^#_1(8) -> 7
                 , c_1_0(3) -> 1
                 , c_1_1(6) -> 1
                 , c_1_1(12) -> 7
                 , c_1_2(19) -> 7
                 , d^#_0(2) -> 1
                 , d^#_0(4) -> 3
                 , d^#_1(5) -> 6
                 , d^#_1(13) -> 12
                 , d^#_2(20) -> 19
                 , h^#_0(2) -> 1
                 , c_2_0(1) -> 1
                 , c_2_1(7) -> 1}
      
   6) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(X) -> c_3()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(X) -> c_3()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [3]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [7]
                  d(x1) = [1] x1 + [4]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [3]
                  g(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_3()}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , g(X) -> n__g(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [2]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [1]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [12]
                  c_6(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  f^#(X) -> c_3()
             , d(X) -> n__d(X)
             , g(X) -> n__g(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [7]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [6]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  c(X) -> d(activate(X))
             , f^#(X) -> c_3()
             , d(X) -> n__d(X)
             , g(X) -> n__g(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , c(X) -> d(activate(X))
                 , f^#(X) -> c_3()
                 , d(X) -> n__d(X)
                 , g(X) -> n__g(X)
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , c(X) -> d(activate(X))
                   , f^#(X) -> c_3()
                   , d(X) -> n__d(X)
                   , g(X) -> n__g(X)
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(10) -> 9
                 , f_2(10) -> 14
                 , f_3(15) -> 14
                 , f_3(15) -> 16
                 , c_1(7) -> 4
                 , c_1(7) -> 5
                 , c_2(11) -> 4
                 , c_2(11) -> 5
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(8) -> 7
                 , n__f_1(8) -> 9
                 , n__f_1(8) -> 14
                 , n__f_2(5) -> 13
                 , n__f_2(10) -> 9
                 , n__f_2(10) -> 14
                 , n__f_2(12) -> 11
                 , n__f_2(12) -> 14
                 , n__f_2(12) -> 16
                 , n__f_3(15) -> 14
                 , n__f_3(15) -> 16
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 5
                 , n__g_1(2) -> 5
                 , n__g_1(4) -> 8
                 , n__g_1(4) -> 10
                 , n__g_2(4) -> 10
                 , n__g_2(13) -> 12
                 , n__g_2(13) -> 15
                 , n__g_3(13) -> 15
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(9) -> 4
                 , d_1(9) -> 5
                 , d_2(14) -> 4
                 , d_2(14) -> 5
                 , d_3(16) -> 4
                 , d_3(16) -> 5
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(7) -> 9
                 , activate_2(7) -> 14
                 , activate_2(8) -> 10
                 , activate_2(11) -> 14
                 , activate_3(11) -> 16
                 , activate_3(12) -> 15
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 5
                 , n__d_1(2) -> 5
                 , n__d_1(9) -> 4
                 , n__d_1(9) -> 5
                 , n__d_2(14) -> 4
                 , n__d_2(14) -> 5
                 , n__d_3(16) -> 4
                 , n__d_3(16) -> 5
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_2(4) -> 10
                 , g_3(13) -> 15
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , c_3_0() -> 1
                 , c_3_0() -> 3
                 , c_3_1() -> 6
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   7) {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__g(X)) -> g(X)
       , activate(n__d(X)) -> d(X)
       , activate(X) -> X
       , f(f(X)) -> c(n__f(n__g(n__f(X))))
       , f(X) -> n__f(X)
       , g(X) -> n__g(X)
       , d(X) -> n__d(X)
       , c(X) -> d(activate(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X
               , f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)
               , g(X) -> n__g(X)
               , d(X) -> n__d(X)
               , c(X) -> d(activate(X))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__g(X)) -> g(X)
               , activate(n__d(X)) -> d(X)
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g(X) -> n__g(X)}
            and weakly orienting the rules
            {  activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g(X) -> n__g(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(X) -> n__d(X)}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(X) -> n__d(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [7]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  d(X) -> n__d(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  f(f(X)) -> c(n__f(n__g(n__f(X))))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c(X) -> d(activate(X))}
            and weakly orienting the rules
            {  f(f(X)) -> c(n__f(n__g(n__f(X))))
             , f(X) -> n__f(X)
             , d(X) -> n__d(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , g(X) -> n__g(X)
             , activate(n__g(X)) -> g(X)
             , activate(n__d(X)) -> d(X)
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c(X) -> d(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [8]
                  n__f(x1) = [1] x1 + [0]
                  n__g(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [5]
                  activate(x1) = [1] x1 + [1]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [5]
                  g(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {activate(n__f(X)) -> f(activate(X))}
              Weak Rules:
                {  c(X) -> d(activate(X))
                 , f(f(X)) -> c(n__f(n__g(n__f(X))))
                 , f(X) -> n__f(X)
                 , d(X) -> n__d(X)
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , g(X) -> n__g(X)
                 , activate(n__g(X)) -> g(X)
                 , activate(n__d(X)) -> d(X)
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {activate(n__f(X)) -> f(activate(X))}
                Weak Rules:
                  {  c(X) -> d(activate(X))
                   , f(f(X)) -> c(n__f(n__g(n__f(X))))
                   , f(X) -> n__f(X)
                   , d(X) -> n__d(X)
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , g(X) -> n__g(X)
                   , activate(n__g(X)) -> g(X)
                   , activate(n__d(X)) -> d(X)
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_2(10) -> 9
                 , f_2(10) -> 11
                 , f_3(15) -> 11
                 , f_3(15) -> 16
                 , c_1(7) -> 4
                 , c_1(7) -> 5
                 , c_2(12) -> 4
                 , c_2(12) -> 5
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(8) -> 7
                 , n__f_1(8) -> 9
                 , n__f_1(8) -> 11
                 , n__f_2(5) -> 14
                 , n__f_2(10) -> 9
                 , n__f_2(10) -> 11
                 , n__f_2(13) -> 11
                 , n__f_2(13) -> 12
                 , n__f_2(13) -> 16
                 , n__f_3(15) -> 11
                 , n__f_3(15) -> 16
                 , n__g_0(2) -> 2
                 , n__g_0(2) -> 4
                 , n__g_0(2) -> 5
                 , n__g_1(2) -> 5
                 , n__g_1(4) -> 8
                 , n__g_1(4) -> 10
                 , n__g_2(4) -> 10
                 , n__g_2(14) -> 13
                 , n__g_2(14) -> 15
                 , n__g_3(14) -> 15
                 , d_0(2) -> 4
                 , d_1(2) -> 5
                 , d_1(9) -> 4
                 , d_1(9) -> 5
                 , d_2(11) -> 4
                 , d_2(11) -> 5
                 , d_3(16) -> 4
                 , d_3(16) -> 5
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(7) -> 9
                 , activate_2(7) -> 11
                 , activate_2(8) -> 10
                 , activate_2(12) -> 11
                 , activate_3(12) -> 16
                 , activate_3(13) -> 15
                 , n__d_0(2) -> 2
                 , n__d_0(2) -> 4
                 , n__d_0(2) -> 5
                 , n__d_1(2) -> 5
                 , n__d_1(9) -> 4
                 , n__d_1(9) -> 5
                 , n__d_2(11) -> 4
                 , n__d_2(11) -> 5
                 , n__d_3(16) -> 4
                 , n__d_3(16) -> 5
                 , g_0(2) -> 4
                 , g_1(2) -> 5
                 , g_2(4) -> 10
                 , g_3(14) -> 15
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   8) {  activate^#(n__g(X)) -> c_7(g^#(X))
       , g^#(X) -> c_4()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           n__f(x1) = [0] x1 + [0]
           n__g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           n__d(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           g^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {g^#(X) -> c_4()}
            Weak Rules: {activate^#(n__g(X)) -> c_7(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {g^#(X) -> c_4()}
            and weakly orienting the rules
            {activate^#(n__g(X)) -> c_7(g^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(X) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [1] x1 + [1]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  g^#(X) -> c_4()
                 , activate^#(n__g(X)) -> c_7(g^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   9) {activate^#(n__g(X)) -> c_7(g^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           n__f(x1) = [0] x1 + [0]
           n__g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           n__d(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           g^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(n__g(X)) -> c_7(g^#(X))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__g(X)) -> c_7(g^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__g(X)) -> c_7(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__g(x1) = [1] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {activate^#(n__g(X)) -> c_7(g^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   10)
      {  activate^#(n__d(X)) -> c_8(d^#(X))
       , d^#(X) -> c_5()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           n__f(x1) = [0] x1 + [0]
           n__g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           n__d(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           g^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {d^#(X) -> c_5()}
            Weak Rules: {activate^#(n__d(X)) -> c_8(d^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {d^#(X) -> c_5()}
            and weakly orienting the rules
            {activate^#(n__d(X)) -> c_8(d^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d^#(X) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [1]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  d^#(X) -> c_5()
                 , activate^#(n__d(X)) -> c_8(d^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   11)
      {h^#(X) -> c_2(c^#(n__d(X)))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           n__f(x1) = [0] x1 + [0]
           n__g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           n__d(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           g^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {h^#(X) -> c_2(c^#(n__d(X)))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {h^#(X) -> c_2(c^#(n__d(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(X) -> c_2(c^#(n__d(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {h^#(X) -> c_2(c^#(n__d(X)))}
            
            Details:         
              The given problem does not contain any strict rules
      
   12)
      {activate^#(n__d(X)) -> c_8(d^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           n__f(x1) = [0] x1 + [0]
           n__g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           n__d(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           g^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(n__d(X)) -> c_8(d^#(X))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__d(X)) -> c_8(d^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__d(X)) -> c_8(d^#(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {activate^#(n__d(X)) -> c_8(d^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   13)
      {activate^#(X) -> c_9()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           n__f(x1) = [0] x1 + [0]
           n__g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           n__d(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3() = [0]
           g^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(X) -> c_9()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(X) -> c_9()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(X) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  n__d(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3() = [0]
                  g^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [4]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {activate^#(X) -> c_9()}
            
            Details:         
              The given problem does not contain any strict rules