'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , c(X) -> d(activate(X)) , h(X) -> c(n__d(X)) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: We have computed the following set of weak (innermost) dependency pairs: { f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , f^#(X) -> c_3() , g^#(X) -> c_4() , d^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate^#(n__g(X)) -> c_7(g^#(X)) , activate^#(n__d(X)) -> c_8(d^#(X)) , activate^#(X) -> c_9()} The usable rules are: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} The estimated dependency graph contains the following edges: {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} ==> {c^#(X) -> c_1(d^#(activate(X)))} {c^#(X) -> c_1(d^#(activate(X)))} ==> {d^#(X) -> c_5()} {h^#(X) -> c_2(c^#(n__d(X)))} ==> {c^#(X) -> c_1(d^#(activate(X)))} {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} ==> {f^#(X) -> c_3()} {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} ==> {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} {activate^#(n__g(X)) -> c_7(g^#(X))} ==> {g^#(X) -> c_4()} {activate^#(n__d(X)) -> c_8(d^#(X))} ==> {d^#(X) -> c_5()} We consider the following path(s): 1) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , c^#(X) -> c_1(d^#(activate(X))) , d^#(X) -> c_5()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , d^#(X) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [7] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [6] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [7] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(X) -> c_1(d^#(activate(X)))} and weakly orienting the rules { f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(X) -> c_1(d^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [3] c^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [13] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [7] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [7] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { c(X) -> d(activate(X)) , d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [8] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [13] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , d^#(X) -> c_5()} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(6) -> 4 , f_1(6) -> 6 , f_2(14) -> 12 , f_2(14) -> 18 , f_3(21) -> 18 , f_3(21) -> 22 , c_1(9) -> 4 , c_1(9) -> 6 , c_2(15) -> 4 , c_2(15) -> 6 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 6 , n__f_1(6) -> 4 , n__f_1(6) -> 6 , n__f_1(10) -> 9 , n__f_1(10) -> 12 , n__f_1(10) -> 18 , n__f_2(6) -> 17 , n__f_2(14) -> 12 , n__f_2(14) -> 18 , n__f_2(16) -> 15 , n__f_2(16) -> 18 , n__f_2(16) -> 22 , n__f_3(21) -> 18 , n__f_3(21) -> 22 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 6 , n__g_1(2) -> 6 , n__g_1(4) -> 10 , n__g_1(4) -> 14 , n__g_2(4) -> 14 , n__g_2(17) -> 16 , n__g_2(17) -> 21 , n__g_3(17) -> 21 , d_0(2) -> 4 , d_1(2) -> 6 , d_1(12) -> 4 , d_1(12) -> 6 , d_2(18) -> 4 , d_2(18) -> 6 , d_3(22) -> 4 , d_3(22) -> 6 , activate_0(2) -> 4 , activate_1(2) -> 6 , activate_1(9) -> 12 , activate_2(9) -> 18 , activate_2(10) -> 14 , activate_2(15) -> 18 , activate_3(15) -> 22 , activate_3(16) -> 21 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 6 , n__d_1(2) -> 6 , n__d_1(12) -> 4 , n__d_1(12) -> 6 , n__d_2(18) -> 4 , n__d_2(18) -> 6 , n__d_3(22) -> 4 , n__d_3(22) -> 6 , g_0(2) -> 4 , g_1(2) -> 6 , g_2(4) -> 14 , g_3(17) -> 21 , f^#_0(2) -> 1 , f^#_0(4) -> 5 , f^#_1(6) -> 11 , c_0_1(8) -> 5 , c_0_1(8) -> 11 , c_0_2(20) -> 11 , c^#_0(2) -> 1 , c^#_1(9) -> 8 , c^#_2(15) -> 20 , c_1_0(3) -> 1 , c_1_1(7) -> 1 , c_1_1(13) -> 8 , c_1_2(19) -> 8 , c_1_3(23) -> 20 , d^#_0(2) -> 1 , d^#_0(4) -> 3 , d^#_1(6) -> 7 , d^#_1(12) -> 13 , d^#_2(18) -> 19 , d^#_3(22) -> 23 , c_5_0() -> 1 , c_5_0() -> 3 , c_5_1() -> 7 , c_5_1() -> 13 , c_5_2() -> 19 , c_5_3() -> 23 , activate^#_0(2) -> 1 , c_6_0(5) -> 1 , c_6_1(11) -> 1} 2) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , c^#(X) -> c_1(d^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , c^#(X) -> c_1(d^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [4] g(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [3] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [7] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(X) -> c_1(d^#(activate(X)))} and weakly orienting the rules { f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(X) -> c_1(d^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [13] c_6(x1) = [1] x1 + [3] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [7] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { c(X) -> d(activate(X)) , d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [7] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , c^#(X) -> c_1(d^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(6) -> 4 , f_1(6) -> 6 , f_2(14) -> 12 , f_2(14) -> 18 , f_3(21) -> 18 , f_3(21) -> 22 , c_1(9) -> 4 , c_1(9) -> 6 , c_2(15) -> 4 , c_2(15) -> 6 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 6 , n__f_1(6) -> 4 , n__f_1(6) -> 6 , n__f_1(10) -> 9 , n__f_1(10) -> 12 , n__f_1(10) -> 18 , n__f_2(6) -> 17 , n__f_2(14) -> 12 , n__f_2(14) -> 18 , n__f_2(16) -> 15 , n__f_2(16) -> 18 , n__f_2(16) -> 22 , n__f_3(21) -> 18 , n__f_3(21) -> 22 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 6 , n__g_1(2) -> 6 , n__g_1(4) -> 10 , n__g_1(4) -> 14 , n__g_2(4) -> 14 , n__g_2(17) -> 16 , n__g_2(17) -> 21 , n__g_3(17) -> 21 , d_0(2) -> 4 , d_1(2) -> 6 , d_1(12) -> 4 , d_1(12) -> 6 , d_2(18) -> 4 , d_2(18) -> 6 , d_3(22) -> 4 , d_3(22) -> 6 , activate_0(2) -> 4 , activate_1(2) -> 6 , activate_1(9) -> 12 , activate_2(9) -> 18 , activate_2(10) -> 14 , activate_2(15) -> 18 , activate_3(15) -> 22 , activate_3(16) -> 21 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 6 , n__d_1(2) -> 6 , n__d_1(12) -> 4 , n__d_1(12) -> 6 , n__d_2(18) -> 4 , n__d_2(18) -> 6 , n__d_3(22) -> 4 , n__d_3(22) -> 6 , g_0(2) -> 4 , g_1(2) -> 6 , g_2(4) -> 14 , g_3(17) -> 21 , f^#_0(2) -> 1 , f^#_0(4) -> 5 , f^#_1(6) -> 11 , c_0_1(8) -> 5 , c_0_1(8) -> 11 , c_0_2(20) -> 11 , c^#_0(2) -> 1 , c^#_1(9) -> 8 , c^#_2(15) -> 20 , c_1_0(3) -> 1 , c_1_1(7) -> 1 , c_1_1(13) -> 8 , c_1_2(19) -> 8 , c_1_3(23) -> 20 , d^#_0(2) -> 1 , d^#_0(4) -> 3 , d^#_1(6) -> 7 , d^#_1(12) -> 13 , d^#_2(18) -> 19 , d^#_3(22) -> 23 , activate^#_0(2) -> 1 , c_6_0(5) -> 1 , c_6_1(11) -> 1} 3) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [2] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} and weakly orienting the rules { g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X)))))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [7] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { c(X) -> d(activate(X)) , d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(f(X)) -> c_0(c^#(n__f(n__g(n__f(X))))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , f_2(11) -> 10 , f_2(11) -> 15 , f_3(17) -> 15 , f_3(17) -> 18 , c_1(8) -> 4 , c_1(8) -> 5 , c_2(12) -> 4 , c_2(12) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(9) -> 8 , n__f_1(9) -> 10 , n__f_1(9) -> 15 , n__f_2(5) -> 14 , n__f_2(11) -> 10 , n__f_2(11) -> 15 , n__f_2(13) -> 12 , n__f_2(13) -> 15 , n__f_2(13) -> 18 , n__f_3(17) -> 15 , n__f_3(17) -> 18 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(2) -> 5 , n__g_1(4) -> 9 , n__g_1(4) -> 11 , n__g_2(4) -> 11 , n__g_2(14) -> 13 , n__g_2(14) -> 17 , n__g_3(14) -> 17 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(10) -> 4 , d_1(10) -> 5 , d_2(15) -> 4 , d_2(15) -> 5 , d_3(18) -> 4 , d_3(18) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , activate_1(8) -> 10 , activate_2(8) -> 15 , activate_2(9) -> 11 , activate_2(12) -> 15 , activate_3(12) -> 18 , activate_3(13) -> 17 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 5 , n__d_1(2) -> 5 , n__d_1(10) -> 4 , n__d_1(10) -> 5 , n__d_2(15) -> 4 , n__d_2(15) -> 5 , n__d_3(18) -> 4 , n__d_3(18) -> 5 , g_0(2) -> 4 , g_1(2) -> 5 , g_2(4) -> 11 , g_3(14) -> 17 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_0_1(7) -> 3 , c_0_1(7) -> 6 , c_0_2(16) -> 6 , c^#_0(2) -> 1 , c^#_1(8) -> 7 , c^#_2(12) -> 16 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 4) { h^#(X) -> c_2(c^#(n__d(X))) , c^#(X) -> c_1(d^#(activate(X))) , d^#(X) -> c_5()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , d^#(X) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [2] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [2] g(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(X) -> c_2(c^#(n__d(X)))} and weakly orienting the rules { g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(X) -> c_2(c^#(n__d(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [3] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(X) -> c_1(d^#(activate(X)))} and weakly orienting the rules { h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(X) -> c_1(d^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [12] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d^#(X) -> c_5()} and weakly orienting the rules { c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d^#(X) -> c_5()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [12] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [8] h^#(x1) = [1] x1 + [14] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { d^#(X) -> c_5() , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [2] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [12] c_2(x1) = [1] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { d(X) -> n__d(X) , d^#(X) -> c_5() , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [12] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [8] h^#(x1) = [1] x1 + [14] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { c(X) -> d(activate(X)) , d(X) -> n__d(X) , d^#(X) -> c_5() , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [3] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , d^#(X) -> c_5() , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , d(X) -> n__d(X) , d^#(X) -> c_5() , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , f_2(14) -> 11 , f_2(14) -> 18 , f_3(21) -> 18 , f_3(21) -> 22 , c_1(9) -> 4 , c_1(9) -> 5 , c_2(15) -> 4 , c_2(15) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(10) -> 9 , n__f_1(10) -> 11 , n__f_1(10) -> 18 , n__f_2(5) -> 17 , n__f_2(14) -> 11 , n__f_2(14) -> 18 , n__f_2(16) -> 15 , n__f_2(16) -> 18 , n__f_2(16) -> 22 , n__f_3(21) -> 18 , n__f_3(21) -> 22 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(2) -> 5 , n__g_1(4) -> 10 , n__g_1(4) -> 14 , n__g_2(4) -> 14 , n__g_2(17) -> 16 , n__g_2(17) -> 21 , n__g_3(17) -> 21 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(2) -> 13 , d_1(11) -> 4 , d_1(11) -> 5 , d_2(2) -> 20 , d_2(18) -> 4 , d_2(18) -> 5 , d_3(22) -> 4 , d_3(22) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , activate_1(8) -> 13 , activate_1(9) -> 11 , activate_2(8) -> 20 , activate_2(9) -> 18 , activate_2(10) -> 14 , activate_2(15) -> 18 , activate_3(15) -> 22 , activate_3(16) -> 21 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 5 , n__d_1(2) -> 5 , n__d_1(2) -> 8 , n__d_1(2) -> 13 , n__d_1(2) -> 20 , n__d_1(11) -> 4 , n__d_1(11) -> 5 , n__d_2(2) -> 20 , n__d_2(18) -> 4 , n__d_2(18) -> 5 , n__d_3(22) -> 4 , n__d_3(22) -> 5 , g_0(2) -> 4 , g_1(2) -> 5 , g_2(4) -> 14 , g_3(17) -> 21 , c^#_0(2) -> 1 , c^#_1(8) -> 7 , c_1_0(3) -> 1 , c_1_1(6) -> 1 , c_1_1(12) -> 7 , c_1_2(19) -> 7 , d^#_0(2) -> 1 , d^#_0(4) -> 3 , d^#_1(5) -> 6 , d^#_1(13) -> 12 , d^#_2(20) -> 19 , h^#_0(2) -> 1 , c_2_0(1) -> 1 , c_2_1(7) -> 1 , c_5_0() -> 1 , c_5_0() -> 3 , c_5_1() -> 6 , c_5_1() -> 12 , c_5_2() -> 19} 5) { h^#(X) -> c_2(c^#(n__d(X))) , c^#(X) -> c_1(d^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , h^#(X) -> c_2(c^#(n__d(X))) , c^#(X) -> c_1(d^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(X) -> c_2(c^#(n__d(X)))} and weakly orienting the rules { g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(X) -> c_2(c^#(n__d(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(X) -> c_1(d^#(activate(X)))} and weakly orienting the rules { h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(X) -> c_1(d^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [9] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [12] c_2(x1) = [1] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] n__f(x1) = [1] x1 + [1] n__g(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [1] g(x1) = [1] x1 + [1] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { c(X) -> d(activate(X)) , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [1] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [12] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { d(X) -> n__d(X) , c(X) -> d(activate(X)) , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [12] c_2(x1) = [1] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , c^#(X) -> c_1(d^#(activate(X))) , h^#(X) -> c_2(c^#(n__d(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , f_2(14) -> 11 , f_2(14) -> 18 , f_3(21) -> 18 , f_3(21) -> 22 , c_1(9) -> 4 , c_1(9) -> 5 , c_2(15) -> 4 , c_2(15) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(10) -> 9 , n__f_1(10) -> 11 , n__f_1(10) -> 18 , n__f_2(5) -> 17 , n__f_2(14) -> 11 , n__f_2(14) -> 18 , n__f_2(16) -> 15 , n__f_2(16) -> 18 , n__f_2(16) -> 22 , n__f_3(21) -> 18 , n__f_3(21) -> 22 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(2) -> 5 , n__g_1(4) -> 10 , n__g_1(4) -> 14 , n__g_2(4) -> 14 , n__g_2(17) -> 16 , n__g_2(17) -> 21 , n__g_3(17) -> 21 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(2) -> 13 , d_1(11) -> 4 , d_1(11) -> 5 , d_2(2) -> 20 , d_2(18) -> 4 , d_2(18) -> 5 , d_3(22) -> 4 , d_3(22) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , activate_1(8) -> 13 , activate_1(9) -> 11 , activate_2(8) -> 20 , activate_2(9) -> 18 , activate_2(10) -> 14 , activate_2(15) -> 18 , activate_3(15) -> 22 , activate_3(16) -> 21 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 5 , n__d_1(2) -> 5 , n__d_1(2) -> 8 , n__d_1(2) -> 13 , n__d_1(2) -> 20 , n__d_1(11) -> 4 , n__d_1(11) -> 5 , n__d_2(2) -> 20 , n__d_2(18) -> 4 , n__d_2(18) -> 5 , n__d_3(22) -> 4 , n__d_3(22) -> 5 , g_0(2) -> 4 , g_1(2) -> 5 , g_2(4) -> 14 , g_3(17) -> 21 , c^#_0(2) -> 1 , c^#_1(8) -> 7 , c_1_0(3) -> 1 , c_1_1(6) -> 1 , c_1_1(12) -> 7 , c_1_2(19) -> 7 , d^#_0(2) -> 1 , d^#_0(4) -> 3 , d^#_1(5) -> 6 , d^#_1(13) -> 12 , d^#_2(20) -> 19 , h^#_0(2) -> 1 , c_2_0(1) -> 1 , c_2_1(7) -> 1} 6) { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(X) -> c_3()} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , f^#(X) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [3] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { g(X) -> n__g(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [7] d(x1) = [1] x1 + [4] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [3] g(x1) = [1] x1 + [8] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(X) -> c_3()} and weakly orienting the rules { d(X) -> n__d(X) , g(X) -> n__g(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(X) -> c_3()} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [2] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [1] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [12] c_6(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { f^#(X) -> c_3() , d(X) -> n__d(X) , g(X) -> n__g(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [9] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [7] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [6] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { c(X) -> d(activate(X)) , f^#(X) -> c_3() , d(X) -> n__d(X) , g(X) -> n__g(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , f^#(X) -> c_3() , d(X) -> n__d(X) , g(X) -> n__g(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , c(X) -> d(activate(X)) , f^#(X) -> c_3() , d(X) -> n__d(X) , g(X) -> n__g(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , f_2(10) -> 9 , f_2(10) -> 14 , f_3(15) -> 14 , f_3(15) -> 16 , c_1(7) -> 4 , c_1(7) -> 5 , c_2(11) -> 4 , c_2(11) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(8) -> 9 , n__f_1(8) -> 14 , n__f_2(5) -> 13 , n__f_2(10) -> 9 , n__f_2(10) -> 14 , n__f_2(12) -> 11 , n__f_2(12) -> 14 , n__f_2(12) -> 16 , n__f_3(15) -> 14 , n__f_3(15) -> 16 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(2) -> 5 , n__g_1(4) -> 8 , n__g_1(4) -> 10 , n__g_2(4) -> 10 , n__g_2(13) -> 12 , n__g_2(13) -> 15 , n__g_3(13) -> 15 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(9) -> 4 , d_1(9) -> 5 , d_2(14) -> 4 , d_2(14) -> 5 , d_3(16) -> 4 , d_3(16) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , activate_1(7) -> 9 , activate_2(7) -> 14 , activate_2(8) -> 10 , activate_2(11) -> 14 , activate_3(11) -> 16 , activate_3(12) -> 15 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 5 , n__d_1(2) -> 5 , n__d_1(9) -> 4 , n__d_1(9) -> 5 , n__d_2(14) -> 4 , n__d_2(14) -> 5 , n__d_3(16) -> 4 , n__d_3(16) -> 5 , g_0(2) -> 4 , g_1(2) -> 5 , g_2(4) -> 10 , g_3(13) -> 15 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , c_3_0() -> 1 , c_3_0() -> 3 , c_3_1() -> 6 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 7) {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} The usable rules for this path are the following: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { activate(n__f(X)) -> f(activate(X)) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , g(X) -> n__g(X) , d(X) -> n__d(X) , c(X) -> d(activate(X)) , activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: We apply the weight gap principle, strictly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g(X) -> n__g(X)} and weakly orienting the rules { activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g(X) -> n__g(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} and weakly orienting the rules { g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__f(X)) -> c_6(f^#(activate(X)))} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [9] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(X) -> n__d(X)} and weakly orienting the rules { activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(X) -> n__d(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [0] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [8] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} and weakly orienting the rules { d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X)} Details: Interpretation Functions: f(x1) = [1] x1 + [4] c(x1) = [1] x1 + [1] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c(X) -> d(activate(X))} and weakly orienting the rules { f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c(X) -> d(activate(X))} Details: Interpretation Functions: f(x1) = [1] x1 + [8] c(x1) = [1] x1 + [8] n__f(x1) = [1] x1 + [0] n__g(x1) = [1] x1 + [1] d(x1) = [1] x1 + [5] activate(x1) = [1] x1 + [1] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [5] g(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { c(X) -> d(activate(X)) , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {activate(n__f(X)) -> f(activate(X))} Weak Rules: { c(X) -> d(activate(X)) , f(f(X)) -> c(n__f(n__g(n__f(X)))) , f(X) -> n__f(X) , d(X) -> n__d(X) , activate^#(n__f(X)) -> c_6(f^#(activate(X))) , g(X) -> n__g(X) , activate(n__g(X)) -> g(X) , activate(n__d(X)) -> d(X) , activate(X) -> X} Details: The problem is Match-bounded by 3. The enriched problem is compatible with the following automaton: { f_1(5) -> 4 , f_1(5) -> 5 , f_2(10) -> 9 , f_2(10) -> 11 , f_3(15) -> 11 , f_3(15) -> 16 , c_1(7) -> 4 , c_1(7) -> 5 , c_2(12) -> 4 , c_2(12) -> 5 , n__f_0(2) -> 2 , n__f_0(2) -> 4 , n__f_0(2) -> 5 , n__f_1(5) -> 4 , n__f_1(5) -> 5 , n__f_1(8) -> 7 , n__f_1(8) -> 9 , n__f_1(8) -> 11 , n__f_2(5) -> 14 , n__f_2(10) -> 9 , n__f_2(10) -> 11 , n__f_2(13) -> 11 , n__f_2(13) -> 12 , n__f_2(13) -> 16 , n__f_3(15) -> 11 , n__f_3(15) -> 16 , n__g_0(2) -> 2 , n__g_0(2) -> 4 , n__g_0(2) -> 5 , n__g_1(2) -> 5 , n__g_1(4) -> 8 , n__g_1(4) -> 10 , n__g_2(4) -> 10 , n__g_2(14) -> 13 , n__g_2(14) -> 15 , n__g_3(14) -> 15 , d_0(2) -> 4 , d_1(2) -> 5 , d_1(9) -> 4 , d_1(9) -> 5 , d_2(11) -> 4 , d_2(11) -> 5 , d_3(16) -> 4 , d_3(16) -> 5 , activate_0(2) -> 4 , activate_1(2) -> 5 , activate_1(7) -> 9 , activate_2(7) -> 11 , activate_2(8) -> 10 , activate_2(12) -> 11 , activate_3(12) -> 16 , activate_3(13) -> 15 , n__d_0(2) -> 2 , n__d_0(2) -> 4 , n__d_0(2) -> 5 , n__d_1(2) -> 5 , n__d_1(9) -> 4 , n__d_1(9) -> 5 , n__d_2(11) -> 4 , n__d_2(11) -> 5 , n__d_3(16) -> 4 , n__d_3(16) -> 5 , g_0(2) -> 4 , g_1(2) -> 5 , g_2(4) -> 10 , g_3(14) -> 15 , f^#_0(2) -> 1 , f^#_0(4) -> 3 , f^#_1(5) -> 6 , activate^#_0(2) -> 1 , c_6_0(3) -> 1 , c_6_1(6) -> 1} 8) { activate^#(n__g(X)) -> c_7(g^#(X)) , g^#(X) -> c_4()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {g^#(X) -> c_4()} Weak Rules: {activate^#(n__g(X)) -> c_7(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {g^#(X) -> c_4()} and weakly orienting the rules {activate^#(n__g(X)) -> c_7(g^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(X) -> c_4()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [1] x1 + [1] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { g^#(X) -> c_4() , activate^#(n__g(X)) -> c_7(g^#(X))} Details: The given problem does not contain any strict rules 9) {activate^#(n__g(X)) -> c_7(g^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(n__g(X)) -> c_7(g^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(n__g(X)) -> c_7(g^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__g(X)) -> c_7(g^#(X))} Details: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [1] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [1] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(n__g(X)) -> c_7(g^#(X))} Details: The given problem does not contain any strict rules 10) { activate^#(n__d(X)) -> c_8(d^#(X)) , d^#(X) -> c_5()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {d^#(X) -> c_5()} Weak Rules: {activate^#(n__d(X)) -> c_8(d^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {d^#(X) -> c_5()} and weakly orienting the rules {activate^#(n__d(X)) -> c_8(d^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d^#(X) -> c_5()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [1] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { d^#(X) -> c_5() , activate^#(n__d(X)) -> c_8(d^#(X))} Details: The given problem does not contain any strict rules 11) {h^#(X) -> c_2(c^#(n__d(X)))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {h^#(X) -> c_2(c^#(n__d(X)))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {h^#(X) -> c_2(c^#(n__d(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(X) -> c_2(c^#(n__d(X)))} Details: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {h^#(X) -> c_2(c^#(n__d(X)))} Details: The given problem does not contain any strict rules 12) {activate^#(n__d(X)) -> c_8(d^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(n__d(X)) -> c_8(d^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(n__d(X)) -> c_8(d^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(n__d(X)) -> c_8(d^#(X))} Details: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(n__d(X)) -> c_8(d^#(X))} Details: The given problem does not contain any strict rules 13) {activate^#(X) -> c_9()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {activate^#(X) -> c_9()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {activate^#(X) -> c_9()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {activate^#(X) -> c_9()} Details: Interpretation Functions: f(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] n__f(x1) = [0] x1 + [0] n__g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] activate(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] n__d(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3() = [0] g^#(x1) = [0] x1 + [0] c_4() = [0] c_5() = [0] activate^#(x1) = [1] x1 + [4] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {activate^#(X) -> c_9()} Details: The given problem does not contain any strict rules